Korovkin-type results and doubly stochastic transformations over Euclidean Jordan algebras

نویسندگان

چکیده

A well-known theorem of Korovkin asserts that if $$\{T_k\}$$ is a sequence positive linear transformations on C[a, b] such $$T_k(h)\rightarrow h$$ (in the sup-norm b]) for all $$h\in \{1,\phi ,\phi ^2\}$$ , where $$\phi (t)=t$$ [a, b], then C[a,b]$$ . In particular, T transformation $$T(h)=h$$ identity transformation. this paper, we present some analogs these results over Euclidean Jordan algebras. We show algebra $${{\mathcal {V}}}$$ \{e,p,p^2\}$$ e unit element in and p an with distinct eigenvalues, $$T=T^*=I$$ (the transformation) span frame corresponding to spectral decomposition p; consequently, coincides (more generally, automorphism ) frame, it doubly stochastic. also sequential weak-majorization versions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive and doubly stochastic maps, and majorization in Euclidean Jordan algebras

A positive map between Euclidean Jordan algebras is a (symmetric cone) order preserving linear map. We show that the norm of such a map is attained at the unit element, thus obtaining an analog of the operator/matrix theoretic Russo-Dye theorem. A doubly stochastic map between Euclidean Jordan algebras is a positive, unital, and trace preserving map. We relate such maps to Jordan algebra automo...

متن کامل

Some P-Properties for Nonlinear Transformations on Euclidean Jordan Algebras

A real square matrix is said to be a P-matrix if all its principal minors are positive. It is well known that this property is equivalent to: the nonsign-reversal property based on the componentwise product of vectors, the order P-property based on the minimum and maximum of vectors, uniqueness property in the standard linear complementarity problem, (Lipschitzian) homeomorphism property of the...

متن کامل

More results on Schur complements in Euclidean Jordan algebras

In a recent article [8], Gowda and Sznajder studied the concept of Schur complement in Euclidean Jordan algebras and described Schur determinantal and Haynsworth inertia formulas. In this article, we establish some more results on the Schur complement. Specifically, we prove, in the setting of Euclidean Jordan algebras, an analogue of the Crabtree-Haynsworth quotient formula and show that any S...

متن کامل

Sparse Recovery on Euclidean Jordan Algebras

We consider the sparse recovery problem on Euclidean Jordan algebra (SREJA), which includes sparse signal recovery and low-rank symmetric matrix recovery as special cases. We introduce the restricted isometry property, null space property (NSP), and s-goodness for linear transformations in s-sparse element recovery on Euclidean Jordan algebra (SREJA), all of which provide sufficient conditions ...

متن کامل

On the P-property of Z and Lyapunov-like transformations on Euclidean Jordan algebras

The P, Z, and S properties of a linear transformation on a Euclidean Jordan algebra are generalizations of the corresponding properties of a square matrix on R. Motivated by the equivalence of P and S properties for a Z-matrix [2] and a similar result for Lyapunov and Stein transformations on the space of real symmetric matrices [6], [5], in this paper, we present two results supporting the con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Positivity

سال: 2022

ISSN: ['1572-9281', '1385-1292']

DOI: https://doi.org/10.1007/s11117-022-00965-3